< < TI01 : TI01 : TI02 > >

TI01: C-ITS Local Broadcast

Use short range communications to broadcast traveler information only within the local area where that information is relevant.

Relevant Regions: Australia, Canada, European Union, and United States

Enterprise

Development Stage Roles and Relationships

Installation Stage Roles and Relationships

Operations Stage Roles and Relationships
(hide)

Source Destination Role/Relationship

Maintenance Stage Roles and Relationships

Functional

This service package includes the following Functional View PSpecs:

Physical Object Functional Object PSpec Number PSpec Name

Physical

The physical diagram can be viewed in SVG or PNG format and the current format is SVG.

Physical diagrams have not been developed for this application yet.


Display Legend in SVG or PNG

Includes Physical Objects:

Physical Object Class Description

Includes Functional Objects:

Functional Object Description Physical Object

Includes Information Flows:

Information Flow Description

Goals and Objectives

Associated Planning Factors and Goals

Planning Factor Goal
A. Support the economic vitality of the metropolitan area, especially by enabling global competitiveness, productivity, and efficiency; Improve freight network
B. Increase the safety of the transportation system for motorized and nonmotorized users; Reduce fatalities and injuries
D. Increase the accessibility and mobility of people and for freight; Reduce congestion
E. Protect and enhance the environment, promote energy conservation, improve the quality of life, and promote consistency between transportation improvements and State and local planned growth and economic development patterns; Protect/Enhance the Environment
F. Enhance the integration and connectivity of the transportation system, across and between modes, for people and freight; Enhance integration and connectivity
G. Promote efficient system management and operation; Improve efficiency
I. Improve the resiliency and reliability of the transportation system and reduce or mitigate stormwater impacts of surface transportation; Improve resiliency and reliability
J. Enhance travel and tourism. Support travel and tourism

Associated Objective Categories

Objective Category
Arterial Management: Reliability
Emergency/Incident Management: Person Hours of Delay
Emergency/Incident Management: Traveler Information
Freeway Management: Efficiency
Freeway Management: Reliability
Special Event Management: Entry/Exit Travel Times
Special Event Management: Traveler Information
System Efficiency: Cost of Congestion
System Efficiency: Delay
System Efficiency: Energy Consumption
System Efficiency: Intensity of Congestion (Travel Time Index)
System Options: Transit Use
System Reliability: Non-Recurring Delay
System Reliability: Planning Time Index
System Reliability: Travel Time 90th/95th Percentile
System Reliability: Travel Time Buffer Index
System Reliability: Variability
Travel Weather Management: Disseminating Information
Traveler Information: Customer Satisfaction
Traveler Information: Information Dissemination
Work Zone Management: Traveler Information

Associated Objectives and Performance Measures

Objective Performance Measure
Decrease the average buffer index for (multiple routes or trips) by X percent over Y years. The buffer index represents the extra time (buffer) most travelers add to their average travel time when planning trips. This is the extra time between the average travel time and near-worst case travel time (95th percentile). The buffer index is stated as a percentage of the average travel time. Average buffer index or buffer time can be calculated using miles traveled as a weighting factor. Buffer time = 95th percentile travel time (min) – average travel time (min).
Decrease the buffer index for (specific travel routes) by X percent over the next Y years. The buffer index represents the extra time (buffer) most travelers add to their average travel time when planning trips. This is the extra time between the average travel time and near-worst case travel time (95th percentile). The buffer index is stated as a percentage of the average travel time. Average buffer index or buffer time can be calculated using miles traveled as a weighting factor. Buffer time = 95th percentile travel time (min) – average travel time (min).
Increase average transit load factor by X percent by year Y. Number of riders on various transit units per trip at peak travel times.
Increase customer satisfaction rating of the timeliness, accuracy, and usefulness of traveler information in the region by W, X, and Z percent, respectively, over Y years. Customer satisfaction ratings of timeliness, accuracy, and usefulness of traveler information.
Increase number of repeat visitors to traveler information website (or 511 system) by X percent in Y years. Number of repeat visitors to traveler information website (or 511 system).
Increase number of users of notifications for traveler information (e.g., e-mail, text message) by X percent in Y years. Number of users of notifications for traveler information (e.g., e-mail, text message) per year.
Increase number of visitors to traveler information website per year by X percent in Y years. Number of visitors to traveler information website per year.
Increase passenger miles traveled per capita on transit by X percent by year Y. Number of passenger miles traveled per capita.
Increase the accuracy and completeness of traveler information posted (on variable message signs, websites, and/or web 2.0 technologies) by reducing the number of incomplete and inaccurate reports by X percent in Y years. Number of complaints received from system users about inaccurate or missing information.
Increase the methods of effectively disseminating special event information to travelers by X percent in Y years (e.g., media releases, highway advisory radio, dynamic message signs, commercial AM and FM radio). Number of effective methods to disseminate special event information to travelers.
Increase the percentage of planned special events (with attendance above Z) with information on anticipated and actual travel conditions being disseminated to the traveling public at least X hours prior to the event. Percent of special events with expected attendance over Z that traveler information is disseminated at least X hours prior to the event.
Increase transit mode share by X percent by year Y during peak periods. Percent of all peak-period trips made by transit.
Increase transit mode share by X percent by year Y. Percent of all trips made by transit.
Provide traveler information regarding work zones using variable message signs (VMS), 511, traveler information websites, and/or Web 2.0 technologies for at least X percent of work zones on major arterials, freeways, and transit routes over the next Y years. Percent of work zones on major arterials, freeways, and transit routes for which traveler information is available via variable message signs (VMS), 511, traveler information websites, and/or Web 2.0 technologies.
Provide travelers with information on multimodal alternatives to avoid work zones for at least X percent of work zones on major arterials, freeways, and transit routes over the next Y years. Percent of work zones on major arterials, freeways, and transit routes for which information on multimodal alternatives to avoid work zones is available to travelers.
Provide work zone information (for upcoming and ongoing construction projects) to all impacted businesses or tenants of business centers with X employees or more by year Y. Number of impacted businesses or tenants of business centers of X employees or more receiving work zone information (for upcoming and ongoing construction projects).
Reduce average travel time into and out of the event by X percent in Y years. Average travel time away from selected special events to a set of locations over a year.
Reduce average travel time into and out of the event by X percent in Y years. Average travel time to selected special events from a set of locations in the area over a year.
Reduce buffer index on arterials during peak and off-peak periods by X percent in Y years. The buffer index (represents the extra time (buffer) travelers add to their average travel time when planning trips in order to arrive on-time 95 percent of the time).
Reduce buffer index on the freeway system during peak and off-peak periods by X percent in Y years. The buffer index (represents the extra time (buffer) travelers add to their average travel time when planning trips in order to arrive on-time 95 percent of the time).
Reduce buffer time index for travelers to multiple similar special events by X percent in Y years. Buffer time index for travelers to multiple similar special events.
Reduce delay associated with incidents on arterials by X percent by year Y. Hours of delay associated with incidents.
Reduce delay associated with incidents on the freeway system by X percent by year Y. Hours of delay associated with incidents.
Reduce excess fuel consumed due to congestion by X percent by year Y. Excess fuel consumed (total or per capita).
Reduce hours of delay per capita by X percent by year Y. Hours of delay (person-hours).
Reduce hours of delay per capita by X percent by year Y. Hours of delay per capita.
Reduce hours of delay per driver by X percent by year Y. Hours of delay (person-hours).
Reduce hours of delay per driver by X percent by year Y. Hours of delay per driver.
Reduce non-special event VMT in the event area during events by X percent in Y years. Non-special event VMT in the event area during events over a year.
Reduce the 90th (or 95th) percentile travel times for each route selected by X percent over Y years. 95th or 90th percentile travel times for selected routes.
Reduce the annual monetary cost of congestion per capita for the next X years. Cost (in dollars) of congestion or delay per capita.
Reduce the average buffer time needed to arrive on-time for 95 percent of trips on (specified routes) by X minutes over Y years. The buffer index represents the extra time (buffer) most travelers add to their average travel time when planning trips. This is the extra time between the average travel time and near-worst case travel time (95th percentile). The buffer index is stated as a percentage of the average travel time. Average buffer index or buffer time can be calculated using miles traveled as a weighting factor. Buffer time = 95th percentile travel time (min) – average travel time (min).
Reduce the average of the 90th (or 95th) percentile travel times for (a group of specific travel routes or trips in the region) by X minutes in Y years. 95th or 90th percentile travel times for selected routes.
Reduce the average planning time for (specific routes in region) by X minutes over the next Y years. The planning time index represents the time that must be added to travel time at free-flow speeds or the posted speed limit to ensure on time arrivals for 95 percent of the trips. Planning time = 95th percentile travel time (minutes) – Travel time at free-flow speed or posted speed limit. Average planning time index or planning time can be computed using a weighted average over person miles traveled.
Reduce the average planning time index for (specific routes in region) by X (no units) over the next Y years. The planning time index represents the time that must be added to travel time at free-flow speeds or the posted speed limit to ensure on time arrivals for 95 percent of the trips. Planning time = 95th percentile travel time (minutes) – Travel time at free-flow speed or posted speed limit. Average planning time index or planning time can be computed using a weighted average over person miles traveled.
Reduce the number of person hours (or vehicle hours) of delay experienced by travelers on the freeway system. Hours of delay (vehicle-hours or person-hours).
Reduce the number of person hours (or vehicle hours) of delay experienced by travelers on the freeway system. Hours of delay per capita or driver.
Reduce the person hours (or vehicle hours) of total delay associated with traffic incidents by X percent over Y years. Person hours (or vehicle hours) of delay associated with traffic incidents.
Reduce the regional average travel time index by X percent per year. Travel time index (the average travel time during the peak period, using congested speeds, divided by the off-peak period travel time, using posted or free-flow speeds).
Reduce the share of freeway miles at Level of Service (LOS) X by Y by year Z. Miles at LOS X or V/C > 1.0 (or other threshold).
Reduce the variability of travel time on specified routes by X percent during peak and off-peak periods by year Y. Variance of travel time. Variance is the sum of the squared deviations from the mean. This can also be calculated as the standard deviation of travel time. Standard deviation is the square root of variance.
Reduce time between incident/emergency verification and posting a traveler alert to traveler information outlets (e.g., variable message signs, agency website, 511 system) by X minutes in Y years. Time to alert motorists of an incident/emergency.
Reduce time to alert travelers of travel weather impacts (using variable message signs, 511, road weather information systems, public information broadcasts, the agency's website, Web 2.0 technologies, etc.) by X (time period or percent) in Y years. Time from beginning of weather event to posting of traveler information on (variable message signs, 511, Road Weather Information Systems, public information broadcasts etc.).
Reduce time to alert travelers of travel weather impacts (using variable message signs, 511, road weather information systems, public information broadcasts, the agency's website, Web 2.0 technologies, etc.) by X (time period or percent) in Y years. Time from beginning of weather event to posting of traveler information on agency website.
Reduce total energy consumption per capita for transportation by X percent by year Y. Total energy consumed per capita for transportation.
Reduce total fuel consumption per capita for transportation by X percent by year Y. Total fuel consumed per capita for transportation.
Reduce total person hours of delay (or travel-time delay per capita) by time period (peak, off-peak) caused by all transient events such as traffic incidents, special events, and work zones. Total person hours of delay during scheduled and/or unscheduled disruptions to travel.
Reduce total person hours of delay (or travel-time delay per capita) by time period (peak, off-peak) caused by scheduled events, work zones, or system maintenance by x hours in y years. Travel time delay during scheduled and/or unscheduled disruptions to travel.
Reduce total person hours of delay (or travel-time delay per capita) by time period (peak, off-peak) caused by unscheduled disruptions to travel. Total person hours of delay during scheduled and/or unscheduled disruptions to travel.


 
Since the mapping between objectives and service packages is not always straight-forward and often situation-dependent, these mappings should only be used as a starting point. Users should do their own analysis to identify the best service packages for their region.

Needs and Requirements

Need Functional Object Requirement

Related Sources

  • None


Security

In order to participate in this service package, each physical object should meet or exceed the following security levels.

Physical Object Security
Physical Object Confidentiality Integrity Availability Security Class
Security levels have not been defined yet.



In order to participate in this service package, each information flow triple should meet or exceed the following security levels.

Information Flow Security
Source Destination Information Flow Confidentiality Integrity Availability
Basis Basis Basis
Security levels have not been defined yet.

Standards

Currently, there are no standards associated with the physical objects in this service package. For standards related to interfaces, see the specific information flow triple pages.





Needs and Requirements

Need Functional Object Requirement

System Requirements

No System Requirements